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Abstract 

A general multivariate formalism has been developed for 
predicting the overall quality of an image given the impact 
that each influential quality attribute would have in 
isolation. The quality change associated with each attribute 
is expressed in just noticeable differences (JNDs). These 
component changes are combined using a variable-power 
Minkowski metric, in which the value of the power reflects 
the degree to which dominant contributions suppress lesser 
effects. The formalism satisfactorily explains the overall 
quality of multivariate images from diverse experiments 
involving different psychometric tasks, viewing modalities, 
and attributes, including image structure, digital artifacts, 
and color and tone reproduction. 

Introduction 

A persistent issue in the field of image quality perception 
has been understanding how the overall quality of a 
multivariate sample is related to its individual attributes. 
Without a general rule for combining the effects of different 
contributors to image quality, psychometric experiments 
grow exponentially in size as the number of attributes 
considered increases, and predictive modeling becomes 
impractical. 

Various attempts have been made to predict 
multivariate quality from a knowledge of the univariate 
(isolated) impact of contributing attributes. In 1964–65, 
Prosser, Allnatt, and Lewis found impairments, defined to 
be harmonically related to the complement of 1–5 scale 
quality ratings, to sum directly in experiments on 
monochrome television images;1,2 however, the crude 
quantization of the scale and range effects limited the 
usefulness of these findings. In 1982, Bartleson modeled 
overall quality as a Minkowski sum (nth root of the sum of 

th n powers) of sharpness and the complement of graininess, 
each being expressed on a 1-9 interval scale,3 but his 
mathematical treatment was not extensible to additional 
attributes without empirical adjustments. In 1992, de Ridder 
proposed the use of Minkowski metrics based on fractional 
quality loss compared to the maximum quality loss 
produced by each attribute, but the maximum values were 
specific to an experiment rather than general in nature and a 
somewhat arbitrary renormalization was required to fit the 

4data. None of these methods, nor others proposed in the 
external literature, have been successful in explaining the 
results of more than a single experiment for which they 

5 were optimized. 
In contrast, the multivariate formalism described in this 

paper, based on a variable power Minkowski metric, is 
successful in explaining results from four different 
experiments. This formalism is described in some detail in 
Chapter 11 of the author’s forthcoming Handbook of Image 
Quality: Characterization and Prediction,6 from which the 
figures in this paper are taken with the permission of the 
publisher, Marcel Dekker, Inc. The Handbook of Image 
Quality also provides many examples of the application of 
multivariate predictions to practical problems. 

The Multivariate Formalism 

The basic tenet of the multivariate formalism is that a 
universal relationship exists between a list of quality 
changes arising from a set of independent attributes, in 
isolation, and the overall quality change when all attributes 
are present in the same sample, provided that attribute and 
overall quality changes are expressed in strictly equivalent 
units. The choice of quality change units employed in the 
multivariate formalism is JNDs of overall quality. It is 
important to distinguish between JNDs of an attribute (a 
measure of detectability of differences in appearance) and 
JNDs of quality arising from that attribute (a measure of the 
significance of the appearance difference in terms of 
quality). A JND of quality arising from an attribute 
generally corresponds to a larger stimulus change than does 
one JND of that attribute, because it is usually possible to 
detect a change in appearance before the change is of 
significance in terms of its impact on quality. JNDs of 
individual attributes are not strictly equivalent units because 
equal detectability of different attributes does not imply 
equal impact on quality. 

The JNDs used in this paper are designated as 50% 
JNDs, because they correspond to a stimulus difference that 
is distinguished 50% of the time. In a forced choice paired 
comparison, if stimuli differ by one 50% JND, a 75%:25% 
proportion results, because the 50% who see the difference 
all provide the “correct” answer, and half of the remainder 
guess correctly by chance. With minor reinterpretation, 

7JNDs may also be used to quantify preferential attributes. 
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Four mathematical requirements are placed upon the 
universal relationship between a list of JNDs of quality 
changes from individual attributes and the overall quality 
change in JNDs. These four requirements, listed below, are 
quoted directly from Ref. 6. 
1. A list of only one quality difference must map to itself, 

i.e., if only one attribute affects quality, the overall 
quality difference must equal the quality difference 
arising from that attribute. This first identity require
ment is a mere formality, but is stated for completeness. 

2. Adding an element equal to zero to the quality differ
ence list does not change the overall quality difference. 
This second identity requirement seems trivial, but it is 
easily violated inadvertently, e.g., by using an average 
of the elements of the list in the relationship. 

3. When attribute quality differences are small in magni
tude, they approximately sum. This additivity require
ment is intuitively plausible; if each of three attributes 
in isolation degrades quality by one JND, it seems 
reasonable to expect that the overall quality loss 
corresponds to approximately three JNDs, because such 
subtle changes are unlikely to affect one another very 
much. 

4. When one or more attribute quality differences are 
large in magnitude, modest changes in other attribute 
quality differences have little impact on overall quality. 
This criterion is called the suppression requirement 
because the presence of a serious degradation suppress
es the impact of minor degradations on overall quality. 
Conversely, and more importantly, if an imaging sys
tem has several minor flaws and one major flaw, fixing 
the minor flaws will not yield much improvement 
because the major flaw largely determines the quality. 
In common parlance, the suppression requirement 
reflects the notion that the worst problem dominates. 

There are many possible combination rules meeting 
these requirements. Among the simplest are those involving 
Minkowski metrics, which are generalized distance metrics, 
and in our application would take the form: 

 1/ nm 

∆Qm = − 
 ∑(− ∆Qi )nm 


 (1) 

 i  

where ∆Qi is the quality change arising from the ith attribute, 
∆Qm is the overall quality change, and nm is the power of 
the metric (which need not be an integer). All quality 
changes here are assumed to correspond to degradations and 
so to be negative, hence the negative signs in Eq. (1), which 
ensure that only positive numbers are raised to a power. 
When nm = 2 the Minkowski metric is a root-mean-square 
(RMS) sum and so corresponds to a normal Euclidean 
distance. 

Equation (1) meets the two identity requirements (#1 
and #2). The suppression requirement (#4) is met when nm > 
1, but the additivity requirement (#3) is only met when nm = 
1. This result can be seen by considering the sum of N equal 
components, which is N raised to the 1/nm power times as 

large as any individual component, instead of N times as 
large, as should be the case in the additive regime. 
Consequently, the additivity and suppression requirements 
cannot both be met simultaneously by a Minkowski metric. 
This consideration suggests the use of a variable power 
Minkowski metric. In particular, we use a power of the form 

nm = 1+ c1 ⋅ tanh
 (−∆Q)max 

 (2) 
 c2  

where (−∆Q)max is the most severe component degradation. 
The constants c1 and c2 are determined by empirical 
optimization, as described subsequently. Because the 
hyperbolic tangent of a positive argument ranges from zero 
to one, the power nm varies from unity to 1 + c1 
continuously as the greatest attribute quality loss increases. 
Placing an asymptotic upper bound on the power helps to 
insure robust behavior at greater degradations. 

Experimental 

Data from four independent experiments for which it is 
possible to convert all assessments to JNDs of quality are 
considered in this analysis. The first of these experiments 

8chronologically is that of C. James Bartleson in 1982, in 
which reflection prints covarying in modulation transfer 
function (MTF) and film granularity were rated for 
sharpness, graininess, and overall quality on 1-9 scales 
using a categorical sort procedure. A subsequent internal 
Eastman Kodak Company study carried out by W. Mitchell 
Burke in 1983 provided sufficient information for these 
three rating scales to be converted to JNDs of overall 
quality. In addition, using similar methodology, Burke 
studied samples covarying in MTF, film granularity, and 
camera negative exposure. The latter primarily affected 
quality through tonal clipping (truncation) of shadow detail 
in underexposures, although there was also a second-order 
influence on image structure characteristics. These results 
constitute the second data set analyzed herein. 

The third and fourth experiments considered have been 
carried out recently using quality rulers, which directly 
yield JNDs of overall quality. The hardcopy quality ruler 

9has been described previously. In brief, it consists of a 
series of stimuli varying in only a single characteristic (in 
this case, MTF), and spaced apart by about three JNDs of 
overall quality. The images are mounted in order of quality, 
in a sliding fixture that allows any of the reference images 
to be brought into close physical proximity with a test 
sample depicting (in the present work) the same scene, but 
varying in different attributes. The observer slides the ruler 
back and forth until the point of equality between the ruler 
and test sample is identified, from which the JNDs of over
all quality of the test sample directly results. The softcopy 

10 quality ruler, which has also been described previously, is 
based on the same general principles, but the implemen
tation differs because of the nature of the display. Reference 
images varying in a single characteristic (again, MTF in the 
present case) and spaced by approximately one JND of 
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quality are computed and stored on disk. A randomly 
chosen reference image and the test image are displayed on 
carefully matched monitors and the observer indicates 
which image is of higher quality. A binary search through 
the reference samples ensues, until the overall quality of the 
test sample has been bracketed to the desired precision. 

In the third experiment, hardcopy samples covarying 
simultaneously in four attributes were assessed against a 
hardcopy quality ruler. Building on the progression already 
provided by the two-attribute MTF and film granularity, and 
three-attribute MTF, film granularity, and camera negative 
exposure work, this study involved variations in MTF, 
digital isotropic noise, tonal clipping, and streaking. Isotro
pic noise is a general term describing noise that does not 
vary significantly with spatial direction; film granularity is 
one example but electronic sensors often produce noise that 
is approximately isotropic as well. The tonal clipping varia
tions emulated that resulting from misexposures in digital 
still cameras. Streaking is a digital artifact usually associ
ated with output devices having linear arrays of marking 
elements that are not perfectly matched, causing stripes of 
differing density parallel to the direction of travel during 
writing. The noise power spectrum (NPS) of streaking so 
defined is a broadband feature lying along the spatial axis 
perpendicular to the streaks produced. 

Three levels of each of the four attributes were chosen 
to produce approximately 4, 8, and 12 JNDs of quality loss 
in isolation. A total of 42 positions were digitally simulated 
in each of four scenes. Twelve univariate positions contain
ing each level of each attribute were included, as was a null 
image, having no introduced degradation. The remaining 29 
multivariate positions sampled from among the 34 = 81 
possible combinations of simultaneous non-zero degrada
tions in all four attributes. Twenty-two observers assessed 
the stimuli, and for this analysis, responses were averaged 
over all observers and scenes. This yielded mean values in 
JNDs of the overall quality change for the multivariate and 
univariate positions; the latter measured the average impact 
of each of the contributing individual attributes in isolation. 

In the fourth experiment, images covarying in color 
balance and tone reproduction (primarily midscale contrast) 
were assessed using the softcopy quality ruler to determine 
the applicability of the multivariate formalism to preferen
tial attributes. Four color balance positions, involving 
different hue shift directions from the average preferred 
position, were chosen to have approximately 2, 4, 8, and 12 
JNDs of quality loss. Three tone reproduction positions 
were selected that had approximately 2, 4, and 8 JNDs of 
quality loss. All univariate and multivariate combinations 
were simulated, including a null sample, so the experiment 
constituted a full factorial design with 20 positions. Two 
additional positions outside the factorial design were 
included for other reasons, leading to a total of 22 positions, 
which were simulated in each of 6 scenes. Twenty-three 
observers assessed the stimuli and the results were pooled 
over scene and observer, yielding mean JNDs of overall 
quality change for each of the bivariate and univariate 
positions. 
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Color Balance Degradation (50% JNDs) 

Figure 1. Overall quality contours for samples varying in color 
balance and tone scale (principally contrast). 

8Bartleson graphically depicted his two-dimensional 
results by plotting iso-quality contours against the two 
contributing attribute levels. A similar plot is presented in 
Fig. 1, based on the softcopy data; “X” symbols mark the 
univariate positions, and plus symbols identify the bivariate 
positions. The Statistical Analysis Software (SAS) 
“Gcontour” procedure11 was used to generate the best fit 
contours shown in the figure; these contours are not based 
on the multivariate formalism equations, but rather are 
simply a graphical means of examining the data. The 
contours correspond to quality losses of 0, −2, −4, … −18 
JNDs. To indicate the goodness of fit, dots are located on 
the contours of the response surface at the locations of the 
judged value of the test level and are connected with a 
radial line segment to the respective univariate levels of the 
tone and color balance degradations contained in the test 
level. For example, the nominal (-8, -8) test level, with 
actual univariate assessments at (-8.9, -9.6), was judged at – 
14.0 JNDs (solid dot) but would be predicted to be at –13.8 
JNDs (plus symbol). 

Figure 1 demonstrates the principles of additivity (item 
#3 in the previous section) and suppression (item #4). At 
lesser degradations (lower left corner), the contours are 
nearly straight lines at 45° angles, as expected if the 
attributes were additive. At greater degradations (farther up 
and/or right), the contours become more sharply curved, 
reflecting the suppression by the dominant attribute. 

Results 

The constants c1 and c2 in Eq. (2) will be empirically 
determined by optimizing the agreement of predictions of 
the multivariate formalism with the experimental data, with 
particular emphasis on fitting the results of the two more 
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recent and rigorously calibrated experiments. In Fig. 2, 
measured data from all four experiments, shown as 
individual symbols, are compared against the predictions of 
Eqs. (1) and (2), which plot as a 45° line. The Bartleson 
two-attribute data are plotted as circles; the Burke three
attribute data as plus symbols; the four-attribute hardcopy 
quality ruler data as asterisks; and the two-attribute softcopy 
quality ruler data as triangles. The data, which span a rather 
wide range of ≈22 JNDs, are all very well fit by the 
optimized multivariate formalism, with the exception of the 
very lowest quality results from the Bartleson experiment, 
which exhibit stronger suppression than is observed in the 
other experiments. It is likely that this apparent suppression 
is a result of range effects (saturation) near the ends of the 
categorical rating scale used in that experiment. 

2 
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-14 1. Calculated 
2. sharp/grain 
3. +exposure

-18 4. +streaking 
5. color/tone 

-22 
-22 -18 -14 -10 -6 -2 2 

Calculated 50% JNDs of Quality 

Figure 2. Calculated versus measured overall quality of 
multivariate samples from four independent studies. 

Selection of the constants c1 and c2 in Eq. (2) to yield 
the result of Fig. 2 was achieved as follows. A nonlinear 
regression was run to optimize the fit to the two recent 
experiments and the two fit parameters were noted to be 
strongly negatively correlated, as might be expected based 
on a Taylor series expansion of the hyperbolic tangent. As 
long as c1 ≥ 2, predictions of the experimental data were 
fairly independent of the individual values of c1 and c2, 
depending only on their product. Therefore, the minimum 
value of c1 = 2 was chosen to minimize the range of values 
assumed by the variable Minkowski power, to improve 
robustness. With this choice, only one fit parameter, c2, 
remained. The regression was run again with c1 fixed, 
yielding c2 = 16.9. Consequently, Eq. (2) becomes; 

nm = 1+ 2 ⋅ tanh
 

(−∆Q)max  
(3) 

 16.9  

The range of possible values of this Minkowski power 
is from one to three. Therefore, the quality changes arising 
from the individual attributes add in a fashion varying 
continuously from summing linearly for small changes, to 
adding as the cube root of a sum of cubes at large changes. 
When the maximum degradation equals −19.9⋅tanh−1(1/2) ≈ 
−9.3 50% JNDs, the degradations add as an RMS sum. 

The success of the multivariate formalism in explaining 
the results of these four experiments is quite remarkable, 
particularly given the use of essentially only a single fit 
parameter. Both the diversity of types and numbers of 
attributes varied, and the variety of psychometric and 
display methods employed, support the general validity of 
the multivariate formalism. 

Discussion 

The implications of the multivariate formalism are most 
easily understood by considering several simple examples. 
Table 1 shows multivariate sums based on Eqs. (1) and (3) 
for several contrasting cases. The first row demonstrates the 
additivity requirement because the three small degradations 
nearly arithmetically sum (they do not exactly sum because 
suppression does not vanish until zero JNDs of degradation 
are approached). The second row shows that as degrada
tions increase, the shortfall relative to additivity grows 
because suppression increases. Still, when the individual 
degradations are comparable in magnitude, the suppression 
is modest, as reflected by the multivariate sum (–6.8 JNDs) 
being significantly lower than the individual contributors (– 
3 JNDs each). In contrast, the following row shows that if 
one attribute accounts for most of the degradation, 
suppression causes it to dominate the multivariate sum 
disproportionately (compare –11.0 JNDs from the 
individual attribute to the total of –11.3 JNDs). Finally, the 
last row shows that redistributing the same arithmetic sum 
of degradation evenly among attributes leads to a superior 
quality position (–10.0 JNDs vs –11.3 JNDs). This point 
will be developed further in a subsequent example. 

Table 1  Examples of Multivariate Sums 
Attribute Multivariate 

Sum 
Property 

Demonstrated#1 #2 #3 
–1 –1 –1 –2.7 additivity (approximate) 
–3 –3 –3 –6.8 symmetric suppression 
–2 –2 –11 –11.3 asymmetric suppression 
–5 –5 –5 –10.0 better balance 
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Figure 3. Predicted iso-quality contours for two attributes based 
on the multivariate formalism. 

Figure 3 shows iso-quality contours like those of Fig. 1 
and demonstrates the difference in suppression between 
balanced (individual degradations approximately equal) and 
imbalanced cases. The contours show overall quality losses 
of −1, −3, ..., −15 50% JNDs. As in Fig. 1, the nearly linear 
contours at lesser degradation (lower left corner) correspond 
to near additivity, whereas the strongly curved contours at 
greater degradations are caused by suppression. Although 
the contours look approximately circular, corresponding to 
a Minkowski power of two (which indeed is in the middle 
of the range of one to three allowed by Eq. (3)), particularly 
as more attributes vary, no fixed power Minkowski metric is 
capable of simultaneously fitting the data from the four 
experiments well. The small cusps in the contours along the 
diagonal of the figure, which will also be seen in the 
following figure, are of no perceptual or practical 
significance; they reflect the use of only the maximum 
degradation in Eq. (3), and could be smoothed out by 
including the second worst degradation. However, this 
modification does not improve the fit to experimental data 
and so the additional complexity is deemed unjustified. 

Starting on the x-axis at the −13 JND contour, where 
the quality change from the first attribute is −13 JNDs, and 
that of the second is zero JNDs, and then increasing the 
severity of the degradation from the second attribute as 
shown by the long arrow, requires ≈ −8.6 JNDs of change in 
the second attribute to shift the overall quality by just −2 
JNDs, to the −15 JND contour. In contrast, when starting 
from the position on the −13 JND contour where the 
contributions of the two attributes are equal (along the 
diagonal), only ≈ −3.4 JNDs of shift in the second attribute 

(short arrow) is required to change the overall quality by the 
same amount, i.e., −2 JNDs. When the attribute effects are 
approximately balanced, changes in either attribute will 
significantly affect overall quality, so no single attribute 
limits quality. 

Frequently, image quality attributes may be affected in 
opposing ways by a process or a variation in system design 
parameters. For example, performing a digital spatial 
filtering operation can increase sharpness but at the expense 
of noise amplification. If an image had poor MTF but very 
low noise, such a sharpening operation might improve 
overall quality by better balancing the attributes. Figure 4 
shows multivariate formalism predictions for the case in 
which quality losses arising from the two attributes are 
constrained to arithmetically sum to a constant amount, so 
that if one improves by a certain number of JNDs, the other 
becomes worse by the same amount. The x-axis shows the 
ratio of the first attribute to the sum of the attributes; this 
fraction varies from zero to one and is equal to one-half 
when the attributes are perfectly balanced. Each curve 
depicts the relationship for a different direct sum of 
attributes, having values of −1, −3, ..., −15 JNDs. At lesser 
degradations, the balance between the attributes has little 
effect on quality because the effects are nearly additive. In 
contrast, at greater degradations, the balance significantly 
influences overall quality, with the best quality occurring 
when the magnitudes of the two attributes are approxi
mately equal. As indicated earlier, in well-designed imaging 
systems, no single attribute consistently dominates overall 
quality, but rather a balance is maintained. 
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Figure 4. Predicted overall quality loss for two attributes that 
arithmetically sum to a constant amount. 
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Conclusion 

The multivariate formalism, represented by Eqs. (1) and (3), 
relates total image quality to the impact of the contributing 
attributes in isolation, when all quantities are expressed in 
terms of 50% JNDs of overall quality. It successfully 
explains the results of four independent experiments 
involving : (1) two, three, and four simultaneously varying 
attributes; (2) both artifactual and preferential attributes, 
including sharpness, noise, digital artifacts, and color and 
tone reproduction; and (3) images displayed in both 
hardcopy and softcopy modes. 
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